Search results for "Amyloid beta-peptide"

showing 10 items of 131 documents

Biological and biophysics aspects of metformin-induced effects: cortex mitochondrial dysfunction and promotion of toxic amyloid pre-fibrillar aggrega…

2016

The onset of Alzheimer disease (AD) is influenced by several risk factors comprising diabetes. Within this context, antidiabetic drugs, including metformin, are investigated for their effect on AD. We report that in the C57B6/J mice, metformin is delivered to the brain where activates AMP-activated kinase (AMPK), its molecular target. This drug affects the levels of β- secretase (BACE1) and β-amyloid precursor protein (APP), promoting processing and aggregation of β-amyloid (Aβ), mainly in the cortex region. Moreover, metformin induces mitochondrial dysfunction and cell death by affecting the level and conformation of Translocase of the Outer Membrane 40 (TOM40), voltage-dependent anion-sel…

0301 basic medicineAgingmedicine.medical_specialtyMitochondrial poreAmyloidTranslocase of the outer membraneContext (language use)AMP-Activated Protein KinasesBiologyAmyloid beta-Protein PrecursorMice03 medical and health sciences0302 clinical medicineβ-amyloid aggregationAlzheimer DiseaseHexokinaseInternal medicine?-amyloid aggregationmitochondrial dysfunctionmedicineAnimalsHypoglycemic Agentsmitochondrial poresMitochondrial transportAmyloid beta-PeptidesVoltage-Dependent Anion Channel 1BrainAMPKcell degenerationCell BiologyAlzheimer's diseasemedicine.diseaseMitochondriaMetformin030104 developmental biologyEndocrinologyAmyloid Precursor Protein SecretasesAlzheimer's diseasemetforminVDAC1030217 neurology & neurosurgeryResearch Papermedicine.drug
researchProduct

Tocotrienol Affects Oxidative Stress, Cholesterol Homeostasis and the Amyloidogenic Pathway in Neuroblastoma Cells: Consequences for Alzheimer’s Dise…

2016

One of the characteristics of Alzheimer´s disease (AD) is an increased amyloid load and an enhanced level of reactive oxidative species (ROS). Vitamin E has known beneficial neuroprotective effects, and previously, some studies suggested that vitamin E is associated with a reduced risk of AD due to its antioxidative properties. However, epidemiological studies and nutritional approaches of vitamin E treatment are controversial. Here, we investigate the effect of α-tocotrienol, which belongs to the group of vitamin E, on AD-relevant processes in neuronal cell lines. In line with the literature, α-tocotrienol reduced the ROS level in SH-SY5Y cells. In the presence of tocotrienols, cholesterol…

0301 basic medicineAlzheimer´s diseasemedicine.medical_treatmentvitamin Eγ-secretasemedicine.disease_causeAntioxidantslcsh:ChemistryNeuroblastomachemistry.chemical_compoundAβ degradation0302 clinical medicineβ-secretaselcsh:QH301-705.5SpectroscopyNeuronschemistry.chemical_classificationbiologyTocotrienolsGeneral Medicinetocopherol3. Good healthComputer Science ApplicationsCholesterolNeuroprotective AgentsTocotrienolmedicine.medical_specialtyAmyloidamyloid-βNeuroprotectionArticleGene Expression Regulation EnzymologicCatalysisCell LineInorganic Chemistry03 medical and health sciencesAlzheimer DiseaseInternal medicinemedicineHumanstocotrienolPhysical and Theoretical ChemistryMolecular BiologyReactive oxygen speciesAmyloid beta-PeptidesCholesterolVitamin EOrganic Chemistrytocotrienol; vitamin E; Alzheimer´s disease; amyloid-β; tocopherol; Aβ degradation; β-secretase; γ-secretaseOxidative Stress030104 developmental biologyEndocrinologychemistrylcsh:Biology (General)lcsh:QD1-999biology.proteinAmyloid Precursor Protein SecretasesReactive Oxygen SpeciesAmyloid precursor protein secretase030217 neurology & neurosurgeryOxidative stressInternational Journal of Molecular Sciences
researchProduct

The Blood-Brain Barrier in Alzheimer’s Disease

2020

The accumulation of neurotoxic amyloid-beta (Aβ) in the brain is one of the characteristic hallmarks of Alzheimer's disease (AD). Aβ-peptide brain homeostasis is governed by its production and various clearance mechanisms. The blood-brain barrier provides a large surface area for influx and efflux mechanisms into and out of the brain. Different transporters and receptors have been implicated to play crucial roles in Aβ clearance from brain. Besides Aβ transport, the blood-brain barrier tightly regulates the brain's microenvironment; however, vascular alterations have been shown in patients with AD. Here, we summarize how the blood-brain barrier changes during aging and in disease and focus …

0301 basic medicineAmyloid beta-PeptidesChemistryBrainATP-binding cassette transporterTransporterBlood–brain barrierLRP1ArticlePeptide Fragments03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structureReceptors LDLAlzheimer DiseaseBlood-Brain BarriermedicineHumansEffluxReceptorNeuroscience030217 neurology & neurosurgeryHomeostasisLipoprotein
researchProduct

Hsp60, amateur chaperone in amyloid-beta fibrillogenesis

2016

BACKGROUND: Molecular chaperones are a very special class of proteins that play essential roles in many cellular processes like folding, targeting and transport of proteins. Moreover, recent evidence indicates that chaperones can act as potentially strong suppressor agents in Alzheimer's disease (AD). Indeed, in vitro experiments demonstrate that several chaperones are able to significantly slow down or suppress aggregation of Aβ peptide and in vivo studies reveal that treatment with specific chaperones or their overexpression can ameliorate some distinct pathological signs characterizing AD. METHODS: Here we investigate using a biophysical approach (fluorescence, circular dichroism (CD), t…

0301 basic medicineAmyloidMolecular chaperonesAmyloid betaBiophysicsPlasma protein bindingInhibition mechanismsBiochemistryChaperoninChaperonin03 medical and health sciences0302 clinical medicinemedicineHumansInhibition mechanismMolecular BiologyAmyloid aggregationAmyloid beta-PeptidesbiologyNeurodegenerationP3 peptideFibrillogenesisChaperonin 60medicine.diseaseAlzheimer's disease treatmentCell biology030104 developmental biologyChaperone (protein)biology.proteinHSP60030217 neurology & neurosurgeryProtein BindingBiochimica et Biophysica Acta (BBA) - General Subjects
researchProduct

Clearing Amyloid-β through PPARγ/ApoE Activation by Genistein is a Treatment of Experimental Alzheimer’s Disease

2016

Amyloid-b (Ab) clearance from brain, which is decreased in Alzheimer's disease, is facilitated by apolipoprotein E (ApoE). ApoE is upregulated by activation of the retinoid X receptor moiety of the RXR/PPAR dimeric receptor. As we have previously demonstrated, estrogenic compounds, such as genistein, have antioxidant activity, which can be evidenced by increased expression of manganese superoxide dismutase (MnSOD). Furthermore, genistein is a non-toxic, well-tested, and inexpensive drug that activates PPARg receptor. We isolated and cultured cortical astrocytes from dissected cerebral cortices of neonatal mice (C57BL/6 J). Preincubation with genistein (5 mM) for 24 hours, prior to the addit…

0301 basic medicineApolipoprotein EApolipoprotein BPeroxisome proliferator-activated receptorGenisteinPlaque Amyloid01 natural sciencesBiochemistrychemistry.chemical_compound0302 clinical medicine030212 general & internal medicineReceptorCells CulturedNootropic Agentschemistry.chemical_classificationbiologyGeneral NeuroscienceBrainGeneral MedicineGenisteinPsychiatry and Mental healthClinical PsychologyNeuroprotective AgentsFemalePeroxisome proliferator-activated receptor gammamedicine.medical_specialtyTetrahydronaphthalenesMice TransgenicRetinoid X receptor03 medical and health sciencesApolipoproteins EDownregulation and upregulationAlzheimer DiseaseIn vivoPhysiology (medical)Internal medicineAvoidance LearningmedicineAnimalsHabituation PsychophysiologicMaze LearningAmyloid beta-PeptidesRecognition PsychologyOlfactory Perception0104 chemical sciencesMice Inbred C57BLPPAR gamma010404 medicinal & biomolecular chemistryDisease Models Animal030104 developmental biologyEndocrinologychemistryBexaroteneAstrocytesbiology.proteinPhytoestrogensGeriatrics and Gerontology030217 neurology & neurosurgeryJournal of Alzheimer's Disease
researchProduct

Vascular pathology: Cause or effect in Alzheimer disease?

2018

Introduction: Alzheimer disease (AD) is the main cortical neurodegenerative disease. The incidence of this disease increases with age, causing significant medical, social and economic problems, especially in countries with ageing populations. Objective: This review aims to highlight existing evidence of how vascular dysfunction may contribute to cognitive impairment in AD, as well as the therapeutic possibilities that might arise from this evidence. Development: The vascular hypothesis emerged as an alternative to the amyloid cascade hypothesis as an explanation for the pathophysiology of AD. This hypothesis locates blood vessels as the origin for a variety of pathogenic pathways that lead …

0301 basic medicineContext (language use)DiseaseBlood–brain barrierlcsh:RC346-42903 medical and health sciences0302 clinical medicineAlzheimer DiseaseMaterials ChemistrymedicineDementiaHumanslcsh:Neurology. Diseases of the nervous systemNeuronsAmyloid beta-PeptidesVascular diseaseNeurodegenerationBrainmedicine.disease030104 developmental biologymedicine.anatomical_structureAgeingBlood-Brain BarrierCerebrovascular CirculationAlzheimer's diseasePsychologyNeuroscience030217 neurology & neurosurgeryNeurología (English Edition)
researchProduct

ADAM10 in Alzheimer's disease: Pharmacological modulation by natural compounds and its role as a peripheral marker.

2019

Abstract Alzheimer’s disease (AD) represents a global burden in the economics of healthcare systems. Amyloid-β (Aβ) peptides are formed by amyloid-β precursor protein (AβPP) cleavage, which can be processed by two pathways. The cleavage by the α-secretase A Disintegrin And Metalloprotease 10 (ADAM10) releases the soluble portion (sAβPPα) and prevents senile plaques. This pathway remains largely unknown and ignored, mainly regarding pharmacological approaches that may act via different signaling cascades and thus stimulate non-amyloidogenic cleavage through ADAM10. This review emphasizes the effects of natural compounds on ADAM10 modulation, which eventuates in a neuroprotective mechanism. M…

0301 basic medicineFarmacologiaADAM10DiseaseRM1-950Natural compoundsCleavage (embryo)NeuroprotectionCatechin03 medical and health sciencesADAM10 ProteinAmyloid beta-Protein Precursor0302 clinical medicineAlzheimer DiseaseDisintegrinHumansSenile plaquesPharmacological modulationPharmacologyMetalloproteinaseAmyloid beta-PeptidesbiologyChemistryPlant ExtractsADAM10ProteinsGinkgo bilobaMembrane ProteinsGeneral Medicineα-SecretaseAlzheimer's disease030104 developmental biologyMalaltia d'AlzheimerNeuroprotective Agents030220 oncology & carcinogenesisPharmaceuticalbiology.proteinTherapeutics. PharmacologyAmyloid Precursor Protein SecretasesNeuroscienceAlzheimer’s diseaseProteïnesBiomarkersBiomedicinepharmacotherapy = Biomedecinepharmacotherapie
researchProduct

Expression of endogenous mouse APP modulates β-amyloid deposition in hAPP-transgenic mice

2017

Amyloid-β (Aβ) deposition is one of the hallmarks of the amyloid hypothesis in Alzheimer’s disease (AD). Mouse models using APP-transgene overexpression to generate amyloid plaques have shown to model only certain parts of the disease. The extent to which the data from mice can be transferred to man remains controversial. Several studies have shown convincing treatment results in reducing Aβ and enhancing cognition in mice but failed totally in human. One model-dependent factor has so far been almost completely neglected: the endogenous expression of mouse APP and its effects on the transgenic models and the readout for therapeutic approaches. Here, we report that hAPP-transgenic models of …

0301 basic medicineGenetically modified mouseMaleMurine amyloid-betaBACE1-ASMice TransgenicPlaque Amyloidlcsh:RC346-429Pathology and Forensic Medicine03 medical and health sciencesCellular and Molecular NeuroscienceAmyloid beta-Protein Precursor0302 clinical medicineMeningesAmyloid precursor proteinMedicineAnimalsHumansTransgenic miceSenile plaqueslcsh:Neurology. Diseases of the nervous systemNeuronsAmyloid beta-Peptidesbiologybusiness.industryAmyloidosisResearchP3 peptideBrainAmyloidosismedicine.diseasePeptide FragmentsBiochemistry of Alzheimer's diseaseAstrogliosisCell biologyMice Inbred C57BL030104 developmental biologyCaspasesAmyloid precursor proteinMutationbiology.proteinAbetaFemaleNeurology (clinical)businessNeuroscienceAlzheimer’s disease030217 neurology & neurosurgery
researchProduct

Amyloid β-peptide insertion in liposomes containing GM1-cholesterol domains.

2015

Neuronal membrane damage is related to the early impairments appearing in Alzheimer's disease due to the interaction of the amyloid β-peptide (Aβ) with the phospholipid bilayer. In particular, the ganglioside GM1, present with cholesterol in lipid rafts, seems to be able to initiate Aβ aggregation on membrane. We studied the thermodynamic and structural effects of the presence of GM1 on the interaction between Aβ and liposomes, a good membrane model system. Isothermal Titration Calorimetry highlighted the importance of the presence of GM1 in recruiting monomeric Aβ toward the lipid bilayer. Light and Small Angle X-ray Scattering revealed a different pattern for GM1 containing liposomes, bot…

0301 basic medicineLiposomeGangliosideAmyloid beta-PeptidesAmyloidCalorimetry Differential ScanningChemistryBilayerOrganic ChemistryBiophysicsIsothermal titration calorimetryG(M1) GangliosideBiochemistry03 medical and health sciences030104 developmental biologyMembraneCholesterolBiochemistryLiposomesThermodynamicslipids (amino acids peptides and proteins)A?-membrane interaction; Double layer perturbation; Isothermal titration calorimetry; Small angle X-ray scatteringLipid bilayerLipid raftBiophysical chemistry
researchProduct

The concerted amyloid-beta clearance of LRP1 and ABCB1/P-gp across the blood-brain barrier is linked by PICALM

2018

The accumulation of neurotoxic amyloid-beta (Aβ) in the brain is a characteristic hallmark of Alzheimer's disease (AD). The blood-brain barrier (BBB) provides a large surface area and has been shown to be an important mediator for removal of brain Aβ. Both, the ABC transporter P-glycoprotein (ABCB1/P-gp) and the receptor low-density lipoprotein receptor-related protein 1 (LRP1) have been implicated to play crucial roles in Aβ efflux from brain. Here, with immunoprecipitation experiments, co-immunostainings and dual inhibition of ABCB1/P-gp and LRP1, we show that both proteins are functionally linked, mediating a concerted transcytosis of Aβ through endothelial cells. Late-onset AD risk fact…

0301 basic medicineMaleAmyloid betaSwineImmunologyPrimary Cell CultureATP-binding cassette transporterBlood–brain barrierClathrinArticlePICALM03 medical and health sciencesBehavioral NeuroscienceMice0302 clinical medicineAlzheimer DiseasemedicineAnimalsATP Binding Cassette Transporter Subfamily B Member 1Mice KnockoutAmyloid beta-PeptidesbiologyEndocrine and Autonomic SystemsChemistryTumor Suppressor ProteinsPhosphatidylinositol bindingBrainEndothelial CellsLRP1Peptide FragmentsCell biologyDisease Models Animal030104 developmental biologymedicine.anatomical_structureTranscytosisReceptors LDLBlood-Brain BarrierMonomeric Clathrin Assembly Proteinsbiology.proteinTranscytosis030217 neurology & neurosurgeryLow Density Lipoprotein Receptor-Related Protein-1Brain, Behavior, and Immunity
researchProduct